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Pixel2Mesh: 3D Mesh Model Generation via
Image Guided Deformation

Nanyang Wang?, Yinda Zhang?, Zhuwen Li?, Yanwei Fu?, Hang Yu, Wei Liu, Xiangyang Xue
and Yu-Gang Jiang†

Abstract—In this paper, we propose an end-to-end deep learning architecture that generates 3D triangular meshes from single color
images. Restricted by the nature of prevalent deep learning techniques, the majority of previous works represent 3D shapes in volumes
or point clouds. However, it is non-trivial to convert these representations to compact and ready-to-use mesh models. Unlike the
existing methods, our network represents 3D shapes in meshes, which are essentially graphs and well suited for graph-based
convolutional neural networks. Leveraging perceptual features extracted from an input image, our network produces the correct
geometry by progressively deforming an ellipsoid. To make the whole deformation procedure stable, we adopt a coarse-to-fine strategy,
and define various mesh/surface related losses to capture properties of various aspects, which benefits producing the visually
appealing and physically accurate 3D geometry. In addition, our model by nature can be adapted to objects in specific domains, e.g.,
human faces, and be easily extended to learn per-vertex properties, e.g., color. Extensive experiments show that our method not only
qualitatively produces the mesh model with better details, but also achieves the higher 3D shape estimation accuracy compared
against the state-of-the-arts.

Index Terms—3D shape generation, graph convolutional neural network, mesh reconstruction, coarse-to-fine, end-to-end framework.
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1 INTRODUCTION

INFERRING the 3D shape from a single perspective is a
fundamental human vision functionality. Its success of it

can potentially reinforce many high-level vision tasks, such
as shape retrieval, pose estimation, and object detection.
However, it is extremely challenging for computer vision
as it requires searching for 3D shapes that explain the
observation as well as hallucinating occluded parts.

Recently, a great success has been achieved for 3d shape
generation from a single color image using deep learning
techniques [1], [2], [3], thanks to their superior learning
capability to integrate the shape prior. Taking advantage
of convolutional layers on regular grids or multi-layer
perceptions, the estimated 3D shape, as the output of the
neural network, is usually represented as either a volume
[1] or a point cloud [2]. However, both shape representations
have strong limitations and lose important surface details.
Volumetric representation requires high spatial resolution to
capture geometry details [1], which consumes a tremendous
amount of memory to represent the solid interior or empty
outside space. Point cloud representation lacks connectivity
among vertices and surface topology [2], and it is thus
non-trivial to produce a watertight shape. In contrast, a
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more desirable shape representation is a composition of
3D surfaces, i.e., a mesh model, since it is light-weight,
capable of modelling shape details, and easy to deform for
animation, to name a few. A comparison between different
shape representations is shown in Fig. 1.

In this paper, we push along the direction of single image
reconstruction, and propose a deep learning framework [4],
[5] to extract a 3D triangular mesh from a single color
image. Rather than directly synthesizing a mesh, i.e., vertex
locations and connectivity, out of a neural network, our
model learns to deform a mesh from an initial shape to
the target geometry. This benefits us from several aspects.
First, deep network is better at predicting residual, e.g., a
spatial deformation, rather than structured output, e.g., a
graph. Second, a series of deformations can be added up
together, which allows shape to be gradually refined from
coarse to fine. This practically enables efficient generation of
rough shapes, and only requires more computation if fine-
grained details are necessary. Last but not least, it provides
the chance to encode any prior knowledge to the initial
mesh, e.g., topology. As a pioneering study, in this work, we
specifically work on objects that can be approximated using
a 3D mesh with genus 0 by deforming an ellipsoid with a
fixed size. In practice, we found that most of the commonly
seen categories can be handled well under this setting, e.g.,
car, plane, table, human face, etc.

Since there is no 3D information available from the
input, i.e., an RGB image, our model needs to infer a shape
that is visually consistent with the given color image, and
hallucinate the shape on the occluded backside. To achieve
this goal, several inherent challenges need to be addressed.
The first challenge is how to represent a mesh model, which
is essentially an irregular graph, in a neural network and
still be capable of extracting shape details effectively from
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Choy et al. [1]

Volume from Choy et al. [1]
Convert using Lorensen et al. [49]

Point cloud from Fan et al. [2]
Covert using Bernardini et al. [51]

Input Image Pixel2Mesh (Ours) Pixel2Mesh with Estimated Color (Ours)

Fig. 1. Given a single color image and an initial mesh, our method can produce a high-quality mesh that contains details from the example.
Comparatively, previous work based on volume and point cloud cannot recover detail and is non-trivial to be converted into water-tight mesh
models. Moreover, our model can predict per-vertex properties such as a texture map.

a given color image represented in a 2D regular grid. It
requires the integration of the knowledge learned from two
data modalities. For the 3D geometry, we directly build a
graph based convolutional network (GCN) [6], [7], [8] on the
mesh model, where the vertices and edges in the mesh are
represented as nodes and connections in the neural network.
Features encoding information for 3D shape are saved at
each vertex. Through forward propagation, the convolu-
tional layers enable feature exchanging across neighboring
nodes, and eventually regress the 3D location for each ver-
tex. For the 2D image, we use a VGG-16 like architecture to
extract features as it has been demonstrated to be successful
for many tasks [4], [5], [9]. To bridge these two architec-
tures, we design a perceptual feature pooling layer to allow
each node in the GCN to pool image features from its 2D
projection on the image, which can be readily obtained via
the known camera intrinsic matrix. The perceptual feature
pooling is enabled once after several convolutions (i.e., a
deformation block described in Section 3.3) using updated
3D locations, and hence the image features from correct
locations can be effectively integrated with 3D shapes.

Given the graph representation, the next challenge is
how to update the vertex location effectively towards the
ground truth. In practice, we observe that a network trained
to directly predict the mesh with a large number of vertices
is likely to make a mistake in the beginning and hard to fix
later. One reason is that a vertex cannot effectively retrieve
features from other vertices with a number of edges away,
i.e., the limited receptive field. To solve this problem, we
design a graph unpooling layer, which allows the network
to initiate with a smaller number of vertices and increase
during the forward propagation. With fewer vertices at
the beginning stages, the network learns to distribute the
vertices around to the most representative location, and then
adds local details as the number of vertices increases later.
Besides the graph unpooling layer, we use a deep GCN
enhanced by shortcut connections [10] as the backbone of
our architecture, which enables large receptive fields for
global context and more steps of movements.

Representing the shape in a graph also benefits the
learning procedure. The known connectivity allows us to
define higher order loss functions across neighboring nodes,
which are important to regularize 3D shapes. Specifically,
we define a surface normal loss to constrain the surface,

an edge loss to encourage a uniform distribution of mesh
vertices for high recall, and a laplacian loss to prevent mesh
faces from intersecting with each other. All of these losses
are essential to generate a quality appealing mesh model,
and none of them can be trivially defined without the graph
representation.

Yet these losses not only capture information in different
aspects, but also enable a spatially variant behavior of the
model generation by heterogeneously weighting losses at
different locations, which allow our model to adapt to a spe-
cific domain smoothly. For example, modeling 3D human
faces requires comparatively more vertices near eyes and
nose than other regions so as to capture fine-grained distinc-
tive details. This can be achieved by increasing the weights
of the chamfer loss (i.e., pay more attention to regressing 3D
position) and edge-length regularization (i.e., shorter edges
and denser vertices) near the important regions indicated
by a predefined weight vector over the vertices. Moreover,
on par with accurate 3D geometry, our model by nature
can easily predict per-vertex properties as well. In fact, the
3D location, i.e., (x, y, z) coordinate, of a vertex can be
considered as one kind of property, and the same network
architecture can thus be extended to predict other properties
as long as they can be represented as values or classes on
each vertex, such as color for both visible and occluded
vertices. Fig. 1 shows an example that our approach can
predict a textured 3D mesh.

The contributions of this paper are mainly as follows.

• First, rather than volumetric representation or point
cloud, we propose a novel end-to-end neural net-
work architecture that generates 3D mesh models
from single RGB images.

• Second, we propose generation by deformation in a
coarse to fine fashion, in which the deformation is
guided by a GCN with perceptual feature pooling
layers.

• Third, we demonstrate that our method produces
more accurate 3D shapes than the state-of-the-arts,
easily adapts to shapes of a specific domain (e.g.,
human face), and can predict per-vertex properties
(e.g., color).

An early and preliminary version of this work has been
published in [11]. Compared with [11], modification of the
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network architecture, new features, and evaluation experi-
ments have been added. Particularly, our model is extended
to predict per-vertex properties, such as color. It thus shows
that our model can generate the nice-looking textured mesh
for both visible and occluded regions of the 3D object.
Furthermore, we adapt our model to other category do-
mains, i.e., human face, and demonstrate that our model
can be trained to behave spatially heterogeneously such that
important local details can be recovered with more vertices
in certain interesting areas. Essentially, our generated 3D
human face mesh successfully captures distinctive facial
characteristics.

2 RELATED WORK

2.1 Multi-view geometry

3D reconstruction has been well studied based on the multi-
view geometry (MVG) [12] in the literature. The major
research directions include structure from motion (SfM) [13]
for large-scale high-quality reconstruction and simultane-
ous localization and mapping (SLAM) [14] for navigation.
Though they achieve great successes, traditional MVG has a
few drawbacks. The data captures is usually time consum-
ing and requires the expertise to obtain a good number of
views with both high object coverage and image overlaps.
The view-dependent surface appearance, e.g., caused by
specular reflections, can often cause troubles for correspon-
dence matching under challenging illumination, which are
addressed by some literature [15] but still far from being
practically feasible. These restrictions lead to the trend of
resorting to learning based approaches. Problematic for
MVS methods are specular reflections, which can also occur
for uniform or homogenous materials.

2.2 Single image 3D reconstruction

Learning based approaches usually consider single or few
images, as they largely rely on the shape priors that can be
learnt from data. Early works can be traced back to Hoiem et
al. [16] and Saxena et al. [17]. Most recently, with the success
of deep learning and the release of large-scale 3D shape
datasets such as ShapeNet [18] and Pix3D [19], learning
based approaches have achieved a great progress. Huang et
al. [20] and Su et al. [21] retrieved shape components from a
large dataset, assembled them, and deformed the assembled
shape to fit the observed image. Despite some successes, the
shape retrieval may not be ideal and potentially increases
chances for the whole system failure.

On the other hand, the line of research that directly
learns 3D shapes from single images is promising due to the
fashion of end-to-end learning. Restricted by the prevalent
grid-based deep learning architectures, most works [1], [22]
output 3D volumes, which are usually with low resolutions
due to the memory constraint on a modern GPU. Then,
Tatarchenko et al. [23] proposed an octree representation,
which allows reconstructing higher resolution outputs with
a limited memory budget. However, 3D volume is still not a
popular shape representation in game and movie industries.
To avoid drawbacks of the voxel representation, many ef-
forts have been devoted to exploring new 3D representation.
Fan et al. [2] proposed to generate point clouds from single

images. One drawback of the point cloud representation is
that there is no local connections between points, and thus
the point positions have a very large degree of freedoms.
Consequently, the generated point cloud is usually not close
to a surface and cannot be used to recover a 3D mesh
directly.

Kar et al. [24] proposed a deformable shape represen-
tation to learn category specific shape knowledge but re-
quired auxiliary semantic classification and segmentation
during the inference. Sinha et al. [25] proposed “geometry
image” to represent a 3D shape which allows using well-
studied 2D convolutions for 3D shape. A similar idea has
been adopted by Matryoshka Networks [26] but with more
sophisticated compositions. Mostly recently, Tatarchenko et
al. [27] discussed the encoder-decoder based single image
reconstruction approaches and showed their limitations.
After our ECCV conference paper, ONet [28] was proposed
as a novel implicit representation for learning-based 3D
reconstruction. This method improves the geometry details
but requires comparatively long inference time due to sam-
pling. The implicit surface representation is orthogonal, and
potentially useful for improving the explicit mesh represen-
tation, which is adopted in this work.

Our work is mostly related to the two recent works [29]
and [30]. However, the former adopts simple silhouette su-
pervision, and hence does not perform well for complicated
objects such as car, lamp, etc; the latter needs a large model
repository to generate a combined model.

2.3 Graph neural network
CNN has shown powerful in many domains, such as images
and natural language processing. However, it is non-trivial
to apply CNN to graph because of the irregular data struc-
ture. Recently, research on graphs with deep learning meth-
ods has drawn huge attention, because lots of real world
data can be represented as graphs, such as social networks,
traffic networks, and 3D mesh models. In fact, an image can
be viewed as a graph with regular connections. Our base
network is a graph neural network [31]; this architecture has
been adopted for shape analysis [32]. Meanwhile, there are
charting-based methods which directly apply convolutions
on surface manifolds [33], [34], [35] for shape analysis.
As far as we know, these architectures have never been
adopted for 3D reconstruction from single images, though
graph and surface manifold are natural representations for
meshed objects. For a comprehensive understanding of the
graph neural network, the charting-based methods, and
their applications, please refer to this survey [6].

2.4 3D face reconstruction
Another closely related research topic is 3D face reconstruc-
tion, in the single perspective setup. In the literature, the
most common scheme is based on 3D morphable model
(3DMM) [36], which represents 3D face by a principal
components analysis (PCA) basis. Most of the early works
[37], [38], [39], [40] fit the 3D face by minimizing the error
between special feature points between input image and
rendered 3D model, and then get the 3DMM parameters by
solving a non-linear optimization problem. However, these
methods are highly sensitive to the initialization such as the
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accuracy of feature points detector. With the success of deep
learning, many recent methods learn to estimate the 3DMM
coefficients leveraging CNN regression. [41], [42] propose
to predict the coefficient update at each iteration. [43], [44]
directly predict the 3DMM coefficients by end-to-end CNN
architectures. However, the 3DMM schemes are restricted
by the principal components which result in a limited shape
space. More recently, Jackson et al. [45] proposed to recon-
struct the 3D structure by direct volumetric CNN regression.
Feng et al. [46] proposed a method to predict the position
map in the UV space. We demonstrate that our method can
be used to reconstruct 3D face bypassing 3DMM fiting and
regression. As far as we know, our proposed framework
is the first model that can reconstruct 3D meshes for both
general objects and human faces.

3 OVERVIEW
Graph-based Convolution. We first provide a brief intro-
duction to graph based convolution; more details can be
found in [6]. A 3D mesh is a collection of vertices, edges
and faces that defines the shape of a 3D object; it can be
represented by a graphM = (V, E ,F), where V = {vi}Ni=1

is the set of N vertices in the mesh, E = {ei}Ei=1 is the set of
E edges with each connecting two vertices, and F = {fi}Ni=1

are the feature vectors attached on vertices. A graph based
convolutional layer is defined on irregular graph as:

f l+1
p = w0f

l
p +

∑
q∈N (p)

w1f
l
q, (1)

where f lp ∈ Rdl , f l+1
p ∈ Rdl+1 are the feature vectors on

vertex p before and after the convolution, and N (p) is
the neighboring vertices of p; w0 and w1 are the learnable
parameter matrices of dl × dl+1 that are applied to all
vertices. Note that w1 is shared for all edges, and thus (1)
works on nodes with different vertex degrees. In our case,
the attached feature vector fp is the concatenation of the 3D
vertex coordinate, feature encoding 3D shape, and feature
extracted from the input color image (if they exist). Running
convolutions updates the features, which is equivalent to
applying a deformation.

3.1 System overview

Our model is an end-to-end deep learning framework that
takes a single color image as input and produces a 3D
mesh model in camera coordinate. The overview of our
framework is illustrated in Fig. 2. The whole network
consists an image feature network and a cascaded mesh
deformation network. The image feature network is a 2D
CNN that extracts perceptual features from the input image,
which is leveraged by the mesh deformation network to
progressively deform an ellipsoid mesh into the desired 3D
model. The cascaded mesh deformation network is a graph-
based convolutional network (GCN), which contains three
deformation blocks intersected by two graph unpooling
layers. Each deformation block takes an input graph rep-
resenting the current mesh model with the 3D shape feature
attached on vertices, and produces new vertices locations
and features. Whereas the graph unpooling layers increase
the number of vertices to increase the capacity of handling

details, while still maintaining the triangular mesh topology.
Starting from a smaller number of vertices, our model learns
to gradually deform and add details to the mesh model in
a coarse-to-fine fashion. In order to train the network to
produce stable deformation and generate an accurate mesh,
we extend the Chamfer Distance loss used by Fan et al.
[2] with three other mesh specific losses – Surface normal
loss, Laplacian regularization loss, and Edge length loss.
The remaining part of this section describes details of these
components.

3.2 Initial ellipsoid

Our model does not require any prior knowledge of the
3D shape, and always deforms from an initial ellipsoid
with average size placed at the common location in the
camera coordinate. The ellipsoid is centered at 0.8m in front
of the camera with 0.2m, 0.2m, 0.4m as the radii of three
axes. The mesh model is generated by the implicit surface
algorithm in Meshlab [47] and contains 156 vertices. We use
this ellipsoid to initialize our input graph, where the initial
feature contains only the 3D coordinate of each vertex.

3.3 Mesh deformation block

The architecture of mesh deformation block is shown in
Fig. 3 (a). In order to generate a 3D mesh model that is
consistent with the object shown in the input image, the
deformation block needs to pool feature (P) from the input
image. This is done in conjunction with the image feature
network and a perceptual feature pooling layer given the
location of vertex (Ci−1) in the current mesh model. The
pooled perceptual feature is then concatenated with the 3D
shape feature attached on the vertex from the input graph
(Fi−1) and fed into a series of Graph based ResNets (G-
ResNets). The G-ResNet produces, also as the output of the
mesh deformation block, the new coordinates (Ci) and 3D
shape feature (Fi) for each vertex.

3.3.1 Perceptual feature pooling layer
We use a VGG-16 like architecture up to layer conv5 3
as the image feature network as it has been widely used.
Given the 3D coordinate of a vertex, we calculate its 2D
projection on the input image plane using camera intrinsics,
and then pool the features from four nearby pixels using
bilinear interpolation. In particular, we concatenate features
extracted from layer ‘conv3 3’, ‘conv4 3’, and ‘conv5 3’,
which results in a total dimension of 1280. This perceptual
feature is then concatenated with the 128-dim 3D features
from the input mesh, which results in a total dimension
of 1408. This is illustrated in Fig. 3 (b). Note that in the
first block, the perceptual feature is 3-dim features (3D
coordinates) since there is no learnt shape feature at the
beginning.

3.3.2 G-ResNet
After obtaining 1408-dim features for each vertex represent-
ing both 3D shape and 2D image information, we design a
graph based convolutional neural network to predict new
location and 3D shape feature for each vertex. This requires
an efficient exchange of the information between vertices.
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Fig. 2. The cascaded mesh deformation network. Our full model contains three mesh deformation blocks in a row. Each block increases mesh
resolution and estimates vertex locations, which are then used to extract perceptual image features from the 2D CNN for the next block.
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(a) Mesh Deformation Block (b) Perceptual Feature Pooling

Fig. 3. (a) The vertex locations Ci are used to extract image features,
which are then combined with vertex features Fi and fed into G-ResNet.⊕

means a concatenation of the features. (b) The 3D vertices are
projected to the image plane using camera intrinsics, and perceptual
features are pooled from the 2D-CNN layers using bilinear interpolation.

However, as defined in (1), each convolution only enables
the feature exchanging between neighboring pixels, which
severely impairs the efficiency of information exchanging.
This is equivalent to the small receptive field issue on 2D
CNN.

Since increasing the depth of the network is equivalent to
increasing the receptive field, we make a very deep network
with shortcut connections [10] and denote it as G-ResNet
(Fig. 3 (a)). In this work, the G-ResNet in all blocks has
the same structure, which consists of 14 graph residual
convolutional layers with 128 channels. There is no weight
sharing. The serial of G-ResNet block produces a new 128-
dim 3D features. In addition to the feature output, there is a
branch which applies an extra graph convolutional layer to
the last layer features and outputs the 3D coordinates of the
vertex.

3.4 Graph unpooling layer

The goal of unpooling layer is to increase the number of
vertices in the GCN. It allows us to start from a mesh
with fewer vertices and add more only when necessary,
which reduces memory costs and produces better results.
A straightforward approach is to add one vertex in the
center of each triangle and connect it with the three ver-
tices of the triangle (Fig. 4 (b) Face-based). However, this
causes imbalanced vertex degrees, i.e., number of edges on
a vertex. Inspired by the vertex adding strategy of the mesh

(a) Graph Unpooling (b) Comparison between face-based and edge-based unpooling

Initial Mesh Face-based Edge-based

Fig. 4. (a) Black vertices and dashed edges are added in the unpooling
layer. (b) The face based unpooling leads to imbalanced vertex degrees,
while the edge-based unpooling remains regular.

subdivision algorithm prevalent in computer graphics, we
add a vertex at the center of each edge and connect it with
the two end-points of this edge (Fig. 4 (a)). The 3D feature
for a newly added vertex is set as the average of its two
neighbors. We also connect three vertices if they are added
on the same triangle (dashed line.) Consequently, we create
4 new triangles for each triangle in the original mesh, and
the number of vertices is increased by the number of edges
in the original mesh. This edge-based unpooling uniformly
upsamples the vertices as shown in Fig. 4 (b) Edge-based.

3.5 Color Pixel2mesh

As show in Fig. 5, our model can have an additional parallel
branch in the last block to produce not only the 3D location
of each vertex but also other per-pixel properties. In fact,
the 3D location, i.e., (x; y; z) coordinate, of a vertex can be
viewed as one kind of properties, and the same network
architecture can thus be extended to predict other properties
as long as they can be represented as values or classes on
each vertex, such as vertex color. In Fig. 5, the additional
task is to estimate the RGB value for each vertex on the
generated mesh.

4 LOSS FUNCTIONS

We define four kinds of losses to constrain the property of
the output shape and the deformation procedure to guaran-
tee appealing results. We adopt the Chamfer loss [2] to con-
strain the location of mesh vertices, a normal loss to enforce
the consistency of surface normal, a Laplacian regularization
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Fig. 5. The additional branch in the last block to predict the vertex
property.

to maintain the relative location between neighboring ver-
tices during deformation, and an edge length regularization
to prevent outliers. These losses are applied with equal
weights on both the intermediate and final meshes.

It is worth mentioning that the behavior of the model
can be controlled by tuning vertex weights. For example, the
chamfer loss focuses on accurate location of the 3D surface.
The surface normal loss encourages high order details, like
smoothness. The edge length regularization controls the
vertex density. This is beneficial when adapting our model
to specific category domains. We show in Section 5.4.3 that
our model can successfully produce 3D models for human
faces and capture distinctive facial details in important
regions. We use a weight vector to construct our weighted
loss function. The weight vector records the weight of each
point on the ground truth points.

Unless otherwise mentioned, we use p for a vertex in the
predicted mesh, q for a vertex in the ground truth mesh,
N (p) for the neighboring vertex of p, and w(q) for the
weight of vertex q in the ground truth, till the end of this
section.

4.1 Chamfer loss
The first challenge is how to design a loss function for com-
paring the generated mesh vertices and the groundtruth.
Inspired by [2], we use the Chamfer distance to measure the
distance of each point to the other set:

lc =
∑
p

min
q
‖p− q‖22 +

∑
q

min
p
‖p− q‖22. (2)

It is reasonably good to regress the vertices close to its
correct position, but is not sufficient to produce a nice 3D
mesh (see the result of Fan et al. [2] in Fig. 1).

Considering human face reconstruction, different from
objects in general categories, face exhibits abundant distinc-
tive characteristics near central regions. Hence, we further
propose a weighted chamfer loss to capture this spatial
variant, which focuses on regressing the 3D position on the
central region of the face, and put less attention to the head
to reduce the probability of being confused by the disturbing
clothes or hair.

Weighted chamfer loss can be defined as:

lc =
∑
p

min
q
‖p− q‖22 · w(q)

q=argminq ‖p−q‖22

+
∑
q

min
p
‖p− q‖22 ·w(q),

(3)

where the weight vector w records the weight of each vertex
q in the ground truth; so q has the exact predefined weight
value w(q). Since the same vertex p may have different
semantic meanings in different predictions, it is non-trivial
to define a weight vector in the predicted mesh. Thus, the
weight of vertex p can be represented by the weight of the
closest vertex for p that is found in the groundtruth, i.e.,
w(q), and q = argminq ‖p− q‖22.

4.2 Normal loss
Smoothness is an important surface property for high qual-
ity meshes, and the known local connections allow us to
apply an additional constraint provided by the surface nor-
mal. To fully take advantage of the mesh representation, we
further define a loss on the surface normal to characterize
high order properties. Essentially, this loss requires the edge
between a vertex and its neighbors to be perpendicular to
the observation from the ground truth. One may find that
this loss does not equal to zero unless on a planar surface.
However, optimizing this loss is equivalent to forcing the
normal of a locally fitted tangent plane to be consistent
with the observation, which works practically well in our
experiment. Moreover, this normal loss is fully differentiable
and easy to optimize. Particularly, this loss has the form of,

ln =
∑
p

∑
q=argminq(‖p−q‖22)

k∈N (p)

‖〈p− k,nq〉‖22, (4)

where q is the closest vertex for p that is found when
calculating the chamfer loss, k is the neighboring vertex of
p, 〈·, ·〉 is the inner product between two vectors, and nq is
the observed surface normal from the ground truth.

4.3 Regularization
Even though using the Chamfer loss and Normal loss,
the optimization is easily stucked in some local minimum.
More specifically, the network may generate some super
large deformation to favor some local consistency, which
is especially harmful at the beginning when the estimation
is far from the ground truth, and causes flying vertices
(Fig. 12).

Laplacian regularization. To handle these issues, we first
propose a Laplacian term to prevent the vertices from
moving too freely, which potentially avoids mesh self-
intersection. The Laplaician term serves as a local detail
preserving operator, which encourages neighboring vertices
to have the same movement. In the first deformation block,
it acts like a surface smoothness term since the input to
this block is a smooth-everywhere ellipsoid; starting from
the second block, it prevents the 3D mesh model from
deforming too much, so that only fine-grained details are
added to the mesh model. To calculate this loss, we first
define a Laplacian coordinate for each vertex p as

δp = p−
∑

k∈N (p)

1

‖N (p)‖
k, (5)

and the Laplacian regularization is defined as

llap =
∑
p

‖δ′p − δp‖22, (6)
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where δ′p and δp are the Laplacian coordinates of a vertex
after and before a deformation block.

Edge length regularization. To penalize flying vertices,
which ususally cause long edges, we add an edge length
regularization loss:

lloc =
∑
p

∑
k∈N (p)

‖p− k‖22. (7)

When reconstructing a human face, central regions areas
require more vertices to reconstruct comparing to the other
areas; thus we define a weighted edge length regularization
to control vertex density; it forces a shorter edge for a region
with higher weight, which is equivalent to gathering more
vertices locally for better details.

Weighted edge length regularization can be defined as:

lloc =
∑
p

∑
k∈N (p)

‖p− k‖22 · w(q)
q=argminq ‖p−q‖22

. (8)

For the vertex p in the predicted mesh, we use the weight of
the closest vertex for p to represent its own weight. All the
edges connected by p share the same weight in calculating
the edge length.

4.4 Property loss
Our model can have multiple parallel branches in the last
block to produce not only the 3D location of each vertex but
also other per-pixel properties, e.g., vertex color. Given the
ground truth of the properties on all vertices, we define the
property loss as:

lprop =
∑
p

‖Pp −Pq‖22, (9)

where q is the closest vertex for p when calculating the
chamfer loss, and Pp and Pq are the properties estimated
for p and observed on q.

The overall loss is a weighted sum of all four losses,
lall = lc+λ1ln+λ2llap+λ3lloc+λ4lprop, where λ1 = 1.6e−4,
λ2 = 0.3 and λ3 = 0.1 are the hyperparameters which
balance the losses and are fixed for all the experiments by
default. λ4 is set to zero unless a property estimation is
needed.

5 EXPERIMENTS

In this section, we perform an extensive evaluation on our
model. In addition to comparing with previous 3D shape
generation works for evaluating the reconstruction accuracy,
we also analyze the importance of each component in our
model. Qualitative results on both synthetic and real-world
images further show that our model produces triangular
meshes with smooth surfaces and still maintains details
depicted in the input images.

5.1 Experimental setup

5.1.1 Dataset.
ShapeNet. We use the dataset provided by Choy et al. [1].
The dataset contains rendering images of 50k models be-
longing to 13 object categories from ShapeNet [18], which is

a collection of 3D CAD models that are organized according
to the WordNet hierarchy. A model is rendered from vari-
ous camera viewpoints, and camera intrinsic and extrinsic
matrices are recorded. More specifically, four views are ren-
dered from each mesh via randomly sampled viewpoints.
For fair comparison, we use the same training/testing split
as in Choy et al. [1]. The mesh models are transformed in
camera coordinates based on the camera parameters from
the 3D-R2N2 [1]; the 3D shapes are downscaled by a factor
of 0.57 to generate rendering.

Online Products. The dataset [48] is composed of 23,000
images of items sold online without ground-truth 3D CAD
models. We perform qualitative evaluation on this dataset
to show the efficacy of our model on the real world images.
Particularly, our model is trained on the 13 shapenet cate-
gories, and is directly applied to this dataset for qualitative
evaluation. Quantitative evaluation is infeasible since the
ground truth 3D shape is not provided.

3D Face Dataset. Our model is also tested on the 3D face
reconstruction task. Particularly, our model is trained on
the large pose 300W-LP dataset [42], which contains more
than 6K unconstrained face images and 3D face meshes. The
ground truth meshes are generated by fitting 3DMM [36]
parameters based on Basel Face Model (BFM) [49], which
only contain the face regions of a head. We further complete
the ground truth face regions into water-tight full head
models using the method from [42] to make them suitable
for our method.

5.1.2 Evaluation Metric.

We adopt the standard 3D reconstruction metric. We first
uniformly sample points from our result and ground truth.
We calculate precision and recall by checking the percentage
of points in prediction or ground truth that can find a
nearest neighbor from the others within certain threshold τ .
An F-score [50] as the harmonic mean of precision and recall
is then calculated. Following Fan et al. [2], we also report the
Chamfer Distance (CD) and Earth Mover’s Distance (EMD).
For F-Score, larger is better. For CD and EMD, smaller is
better.

On the other hand, we realize that the commonly used
evaluation metrics for shape generation may not thoroughly
reflect the shape quality. They often capture occupancy or
point-wise distance rather than surface properties, such as
continuity, smoothness, and high-order details, for which a
standard evaluation metric is barely missing in the litera-
ture. Thus, we recommend to pay attention to qualitative
results for better understanding of these aspects.

5.1.3 Baselines.

We compare the presented approach to the most recent
single image reconstruction approaches. Specifically, we
compare with two state-of-the-art methods - Choy et al. [1]
(3D-R2N2) producing 3D volume, and Fan et al. [2] (PSG)
producing point cloud. Since the metrics are defined on
point cloud, we can evaluate PSG directly on its output,
our method by uniformly sampling point on surface, and
3D-R2N2 by uniformly sampling point from mesh created
using the Marching Cube [51] method.
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Category
F-score(τ )↑ F-score(2τ )↑

3DR2N2 PSG N3MR Ours 3DR2N2 PSG N3MR Ours

plane 41.46 68.20 62.10 71.12 63.23 81.22 77.15 81.38
bench 34.09 49.29 35.84 57.57 48.89 69.17 49.58 71.86
cabinet 49.88 39.93 21.04 60.39 64.83 67.03 35.16 77.19
car 37.80 50.70 36.66 67.86 54.84 77.79 53.93 84.15
chair 40.22 41.60 30.25 54.38 55.20 63.70 44.59 70.42
monitor 34.38 40.53 28.77 51.39 48.23 63.64 42.76 67.01
lamp 32.35 41.40 27.97 48.15 44.37 58.84 39.41 61.50
speaker 45.30 32.61 19.46 48.84 57.86 56.79 32.20 65.61
firearm 28.34 69.96 52.22 73.20 46.87 82.65 63.28 83.47
couch 40.01 36.59 25.04 51.90 53.42 62.95 39.90 69.83
table 43.79 53.44 28.40 66.30 59.49 73.10 41.73 79.20
cellphone 42.31 55.95 27.96 70.24 60.88 79.63 41.83 82.86
watercraft 37.10 51.28 43.71 55.12 52.19 70.63 58.85 69.99
mean 39.01 48.58 33.80 59.72 54.62 69.78 47.72 74.19

TABLE 1
F-score (%) on the ShapeNet test set at different thresholds, where τ = 10−4. For F-score, larger is better. Best results under each threshold are

bolded.

Category
CD↓ EMD↓

3DR2N2 PSG N3MR AtlasNet Ours 3DR2N2 PSG N3MR AtlasNet Ours

plane 0.895 0.430 0.450 0.468 0.477 0.606 0.396 7.498 0.659 0.579
bench 1.891 0.629 2.268 0.703 0.624 1.136 1.113 11.766 1.204 0.965
cabinet 0.735 0.439 2.555 0.433 0.381 2.520 2.986 17.062 2.503 2.563
car 0.845 0.333 2.298 0.340 0.268 1.670 1.747 11.641 1.407 1.297
chair 1.432 0.645 2.084 0.724 0.610 1.466 1.946 11.809 1.534 1.399
monitor 1.707 0.722 3.111 0.848 0.755 1.667 1.891 14.097 1.641 1.536
lamp 4.009 1.193 3.013 1.575 1.295 1.424 1.222 14.741 1.35 1.314
speaker 1.507 0.756 3.343 0.812 0.739 2.732 3.490 16.720 3.108 2.951
firearm 0.993 0.423 2.641 0.461 0.453 0.688 0.397 11.889 0.735 0.667
couch 1.135 0.549 3.512 0.621 0.490 2.114 2.207 14.876 1.91 1.642
table 1.116 0.517 2.383 0.577 0.498 1.641 2.121 12.842 1.673 1.480
cellphone 1.137 0.438 4.366 0.443 0.421 0.912 1.019 17.649 0.868 0.724
watercraft 1.215 0.633 2.154 0.839 0.670 0.935 0.945 11.425 0.907 0.814
mean 1.445 0.593 2.629 0.680 0.591 1.501 1.653 13.386 1.500 1.380

TABLE 2
CD and EMD on the ShapeNet test set at different thresholds. For CD and EMD, small is better. Best results under each threshold are bolded.

Method. F-score(τ )↑ F-score(2τ )↑ CD↓ EMD↓
Tartarchenko et al 65.335 79.733 0.361 1.273

Ours 72.128 87.247 0.236 1.220

TABLE 3
Comparsion to Tartarchenko et al.(1283) on ShapeNet-cars.

We further compare to other works which also produce
mesh as 3D representation; these include Neural 3D Mesh
Renderer (N3MR) [29], and AtlasNet [52], since their codes
are publically available and their performances are com-
petitive in the literature. For fair comparison, the models
are trained with the same data using the same number of
epochs.

5.1.4 Training Details and Runtime.
Our network receives input images of size 224 × 224, and
an initial ellipsoid with 156 vertices and 462 edges. The
network is implemented in Tensorflow and optimized using
Adam with weight decay 1e-5. The batch size is 1; the
total number of training epochs is 50; the learning rate is
initialized as 3e-5 and drops to 1e-5 after 40 epochs. The
total training time is 72 hours on a NVidia Titan X. During
testing, our model takes 15.58ms on average to generate a
mesh with 2466 vertices.

5.2 Comparison to state of the arts
Table 1 shows F-scores with different thresholds of different
methods. Our approach outperforms the other methods in
all categories except watercraft. Notably, our results are
significantly better than the others in all categories under a
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(a) (b) (c) (d) (e) (g) (h)(f)

Fig. 6. Qualitative results. (a) Input image; (b) volume from 3D-R2N2 [1], converted using Marching Cube [51]; (c) point cloud from PSG [2],
converted using ball pivoting [53]; (d) N3MR [29]; (e) AtlasNet [52]; (f) ONet [28]; (g) ours; (h) ground truth.

Fig. 7. Qualitative results of real-world images from the Online Products
dataset and Internet.

smaller threshold τ , showing at least 10% F-score improve-
ment. N3MR does not perform well, and its result is about
50% worse than ours, probably because their model only
learns from limited silhouette signals in images and lacks of
explicit handling of the 3D mesh.

We also show the CD and EMD for all categories in Ta-
ble 2. Our approach outperforms most of the other methods
in most of the categories and achieves the best mean per-
formance. The major competitor is PSG [2], which produces
results in 3D point clouds. The point cloud representation
has more flexibility and capacity in exhibiting geometry
details, but does not necessarily leads to a better mesh

Fig. 8. Ground truth meshes (top) and failure cases of Pixel2Mesh
(bottom).

model without proper postprocessing. To demonstrate this,
we show the qualitative results in Fig. 6. To compare the
quality of the mesh model, we convert volumetric and point
cloud to mesh using standard approaches [51], [53]. As we
can see, the 3D volume results produced by 3D-R2N2 lack of
details due to the low resolution, e. g., the legs are missing
in the chair example as shown in the 4-th row of Fig. 6.
We further try the octree based solution [23] to increase the
volume resolution, but find that it is still hard to recover
surface level details as much as our model. PSG produces
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Input image Reconstructed colored mesh

Fig. 9. Visualization of predicted colored meshes.

sparse 3D point clouds that produce relatively smaller error
in Chamfer distance. However, the point clouds do not
necessarily produce mesh with noise-free surface due to the
lack of surface related loss function (e.g., on surface normal).
For methods producing 3D mesh, N3MR produces very
rough shape, which may be sufficient for some rendering
tasks, but cannot recover complicated objects such as chairs
and tables. We also test AtlasNet [52] with 25 patches and
2500 points, which adds relatively more details but still
contains strong artifacts and holes. The ONet [28] is one of
the most state-of-the-arts of this topic, published in CVPR
2019. We directly run the released trained model from the
ONet authors to produce the meshes in Fig. 6. It can be
seen that ONet can produce reasonable meshes with smooth
surface details (e.g., the car and airplane in Fig. 6 (f))), but
occasionally ignores some small parts of objects, e.g., the
legs of chair. While producing a reasonably good result,
Pixel2Mesh typically fails when the target geometry cannot
be represented by a genus-0 mesh, such as the lamp and
chair example in Fig. 8.

5.3 Comparison to Octree based Voxel Generation
A promising direction to improve the shape accuracy and
detail is to increase the spatial resolution of the generated
3D shape. Here we compare to an Octree based Voxel Re-
construction method [23], which produces high resolution
voxels, i.e., 1283. Following Tartarchenko et al. [23], we train
on Shapenet-car and compare to it as shown in Tab. 3. Our
model consistently outperforms the octree based approach
in all the evaluation metrics. This is presumable because that
high spatial resolution only provides the chance of encoding
better geometry, but does not trivially allow high order
losses, like normal loss, to directly learn geometry details.

5.4 Model Analysis
In this section, we verify the capability of our model in gen-
eralizing to real-world images, category in specific domains,

and predicting additional per-vertex properties.

5.4.1 Reconstructing Real-World Images
ShapeNet is a large dataset of 3D CAD models without cor-
responding real-world images. During training, the images
are obtained by rendering using off-the-shelve physically
based renderers. One reasonable concern is that models
trained on synthetic images may suffer from the domain
gap issue when testing on real-world images. To fill the
domain gap, several 3D object datasets, which contain real
images and associated 3D models, have been released; these
datasets include Pascal 3D+, ObjectNet3D, Pix3D [54] and
IKEA. However, they all have their limitations. For Pascal
3D+ and ObjectNet3D, the groudtruth 3D models are not
reconstructed but manually selected from ShapeNet and
aligned with the image object, so the 3D shape and position
are not accurate, which might be sufficient for the low-
resolution voxel reconstruction method, but not suitable for
mesh or point cloud reconstructions. On the other hand,
IKEA has well aligned image-shape pairs, but it only has
759 images and 90 3D models, relatively small to train our
model from scratch. In addition, the images in IKEA dataset
usually contain multiple objects that are not genus-0 with
mutual occlusion on heavy background.

Thus we evaluate the generalization of our model
trained on ShapeNet without fine-tuning and test our net-
work on the Online Products dataset and Internet images for
qualitative evaluation on real images. The results are shown
in Fig. 7. As can be seen, our model trained on synthetic
data generalizes well to the real-world images (better with
white background) across various categories.

5.4.2 Generating Colored Mesh
Here we show that our model can predict additional per-
vertex properties, taking vertex color as an example. The
task here is to predict the RGB value for each vertex on
the generated mesh. As shown in Fig. 5, we attach an
additional branch after the last deformation block to predict
a 3 dimensional feature on each vertex. Since ShapeNet
provides textured 3D models, the color prediction task can
be learned in a fully supervised fashion.

Fig. 9 shows results of our generated mesh with pre-
dicted color. As can be seen, our model not only learns
to recover the color for vertices visible from the input
image viewpoint, but also hallucinates reasonable color for
invisible vertices, e.g., vertices occluded in the back. Notice
that fulfilling this task is non-trivial as it requires knowledge
of geometry symmetry (e.g., car windows) and object part
semantics (e.g., chair top and leg).

5.4.3 3D Face Reconstruction
Here we show that our model can easily adapt to shapes
of a specific domain by tuning the loss weights, taking 3D
face reconstruction as an example. We adjust our models
to favor the shape generation for human face in the fol-
lowing aspects. First, face is a relatively complex model
and requires more vertices to capture details. Therefore,
we use 4 blocks, which produce 9858 vertices. Second,
faces in dramatically different poses result in large shape
variance and make convergence harder. To make the whole
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(a) Face region subdivision (b) Comparison between vanilla loss and weighted loss

Input image Result with vanilla loss Result with weighted loss

Fig. 10. (a) The ground truth face points is subdivided into 4 regions, central region has larger weight. (b)The result with weighted loss lead to more
vertices in central region and fine-grained details.

Fig. 11. Visualization of predictions on the AFLW2000-3D dataset. Even designed for generic shape generation, our method adapts to specific
human face domain naturally and recover good geometry with distinctive facial details. Our model also is not sensitive to pose alignment.

deformation procedure more stable, during training, we
adopt a more aggressive coarse-to-fine strategy by starting
with a strong Laplacian regularization to recover global
alignment and then gradually decreasing it to capture more
local details. Lastly, different from objects in general cat-
egories, face exhibits abundant distinctive characteristics
near central regions, and therefore these areas require more
vertices to reconstruct comparing to the other areas. To
fulfill this spatial variant requirement, as Fig. 10 (a) shows,
we subdivide ground truth points into four regions and
assign each a different weight when computing the loss.
From dark to bright, we assign regions with increasing
weights, i.e., 0.25, 0.5, 1.5, and 2, to reflect their raising
importances. The weights are applied on each vertex in the
region when calculating the chamfer loss and edge-length
loss. We use a weight vector to construct our weighted loss
function, and the weight vector records the weight of each
point on the ground truth points. The weighted chamfer
loss focuses on regressing the 3D position on the central
region of the face, and puts less attention to the head to
reduce the probability of being confused by the disturbing
clothes or hair. The weighted edge length regularization
forces the shorter edge for region with higher weight, which
is equivalent to gathering more vertices locally for better
details.

As shown in Fig. 10 (b), the model with vanilla loss

generates uniform distributed vertices as it treats all edges
equally when regularizing the edge length. In contrast, the
result with the weighted loss has more vertices in the central
face region than the back-head region, and produces fine-
grained details in the key regions, e.g., mouth. As shown in
Fig. 11, our method works well on human faces, even with
large pose and expression.

Quantitatively, we compare to the state-of-the-art face
reconstruction models, including VRN [45], VRN-Multitask
[45], VRN-Guided [45], 3DDFA [42], and EOS [55], on the
AFLW2000-3D dataset [42] with the standard data split. We
employ the Normalized Mean Error (NME) as the evalu-
ation metric as it has been widely used in literature. The
results are shown in Table 5. It can be seen that the per-
formance of our model is competitive among the state-of-
the-art face reconstruction models even though our model
is designed for generic objects with no specific optimization
for human face.

5.5 Ablation Study

Now we conduct controlled experiments to analyze the
importance of each component in our model. Table 4 reports
the performance of each model by removing one component
from the full model. Again, we argue that these commonly
used evaluation metrics do not necessarily reflect the quality
of the recovered 3D geometry. For example, the model with



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

no edge length regularization achieves the best performance
across all; however, it in fact produces the worst mesh
(Fig. 12, the last 2nd column). As such, we use the qual-
itative result in Fig. 12 to show the contribution of each
component in our system.

5.5.1 Graph Unpooling
We first remove the graph unpooling layers, and thus each
block has the same number of vertices as in the last block
of our full model. It is observed that the deformation makes
a mistake easier at beginning, which cannot be fixed later
on. Consequently, there are some obvious artifacts in some
parts of the objects.

5.5.2 G-ResNet
We then remove the shortcut connections in G-ResNet, and
make it regular GCN. As can be seen from Table 4, there is
a huge performance gap in all four measurement metrics,
which implies the failure of optimizing Chamfer distance.
The main reason is the degradation problem observed in the
very deep 2D convolutional neural network. Such a problem
leads to a greater training error (and thus a greater testing
error) when adding more layers to a suitably deep model
[10]. Essentially, our network has 42 graph convolutional
layers. Thus, this phenomenon has also been observed in
our very deep graph neural network experiment.

5.5.3 Loss Terms
We evaluate the function of each additional term besides
the Chamfer loss. As can be seen in Fig. 12, removing the
normal loss severely impairs the surface smoothness and
local details, e.g., seat back; removing the Laplacian term
causes intersecting geometry because the local topology
changes, e.g., the hand held of the chair; removing the
edge length term causes flying vertices and surfaces, which
completely ruins the surface characteristics. These results
demonstrate that all the components presented in this work
contribute to the final performance.

5.5.4 Number of Deformation Blocks
We now analyze the effects of the number of blocks. Figure
Fig. 13 (left) shows the mean F-score(τ ) and CD with regard
to the number of blocks. The results indicate that increasing
the number of blocks helps, but the benefit is getting satu-
rated with more blocks, e.g., from 3 to 4. In our experiments,
we find that 4 blocks result in too many vertices and edges,
which slows down our approach dramatically even though
it provides better accuracy in evaluation metrics. Therefore,
we use 3 blocks in all our experiment for the best balance of
performance and efficiency.

6 CONCLUSION

We presented an approach to extract 3D triangular meshes
from a singe RGB image. We exploited the key advantages
the mesh presentation can bring to us, and the key issues
required to be solved for success. The former includes sur-
face normal constraints and information propagation along
edges; the latter includes perceptual features extracted from
images as a guidance. We proposed a very deep cascaded

graph convolutional neural network with “shortcut” con-
nections. Meshes are progressively refined by our network
trained end-to-end with the chamfer loss and normal loss,
together with important regularization losses. Our results
are significantly better than the previous state-of-the-art
methods using 3D volume or 3D point cloud as the rep-
resentation. We would believe that mesh representation is
the next big thing in this direction, and hope that the key
components discovered in this work can inspire follow-up
works.

Future work Our method only produces meshes with the
same topology as the initial mesh. In the future, we will
extend our approach to more general cases, such as scene
level reconstruction, and learn from multiple images for
multi-view reconstruction [56].
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Input image - Edge Length- Laplacian- Normal- Unpooling - ResNet Full model

Fig. 12. Qualitative results for ablation study. Each column shows the results from the model trained with the corresponding model component
disabled. The results reflect the contribution of each component especially for the regularization ones.

Category -ResNet -Laplacian -Unpooling -Normal -Edge length Full model

F (τ )↑ 55.308 60.801 60.222 58.668 60.101 59.728
F (2τ )↑ 71.567 75.202 76.231 74.276 76.053 74.191
CD↓ 0.644 0.596 0.561 0.598 0.552 0.591
EMD↓ 1.583 1.350 1.656 1.445 1.479 1.380

TABLE 4
Ablation study that evaluates the contributions of different ideas to the performance of the presented model. The table reports all 4 measurements.

For F-score, larger is better. For CD and EMD, smaller is better.
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Fig. 13. Left: Effect of number of blocks. Each curve shows the mean
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examples showing the output after each block.
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